Parameter estimation of a lead-acid battery model using genetic algorithm

Abstract

Lead-Acid batteries models classifications are shown. The battery model used and its charging and discharging equations are shown. These equations are expanded to find the value of the time constant of this model, which is fixed at a given value. A genetic algorithm is applied to these expanded equations to estimate the value of the time constant. Some battery charging and discharging cycles are used for estimation and validation of the proposed system. A time constant other than the previously set value is found. A simulation study is used to demonstrate the feasibility of the proposed parameter determination method.

References

LEAO, J. F. A.; HARTMANN, L. V.; CORREA, M.; LIMA, A. M. N. Lead-acid battery modeling and state of charge monitoring. Applied Power Electronics Conference andExposition (APEC), Twenty-Fifth Annual IEEE, p. 239_243, 2010.

ROSEMBACK, R. H. Conversor CC-CC bidirecional buck-boost atuando como controlador de carga de baterias em um sistema fotovoltaico. Tese (Mestrado) Universidade Federal de Juiz de Fora, 2004.

CHAGAS, M. W. P. Novas tecnologias para avaliação de baterias. Tese (Mestrado Profissionalizante) - IEP/LACTEC, 2007.

KETZER, M.; LIMA, A.; OLIVEIRA, A.; JACOBINA, C. Evaluating circuit topologies for battery charge equalization. Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, p. 743_748, 2013.

SCHNEIDER, K. K. Modelos analíticos na predição do tempo de vida de baterias utilizadas em dispositivos móveis. Tese (Mestrado) _ Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Unijuí, 2011.

SOUSA, J. R. de B. Modelagem e supervisão de bancos de baterias em sistemas de múltiplas fontes de energia utilizando redes de petri. Tese (Doutorado) - Universidade Federal de Campina Grande - UFCG, 2008.

BINDNER, H.; CRONIN, T.; LUNDSAGER, P. Lifetime modelling of lead acid batteries. Denmark, 2005.

FREITAS, D. C. C.; KETZER, M. B.; LIMA, A. M. N. Parameter optimization of a lead-acid battery model. 5 International Conference on Engineering Optimization - EngOpt 2016, 2016.

FREITAS, D. C. C.; LIMA, A. M. N.; MORAIS, M. R. A. Determining lead-acid battery dc resistance by tremblay battery model. 7 International Renewable Energy Congress - IREC 2016 (IEEE), 2016.

FREITAS, D. C. C.; LIMA, A. M. N.; SILVA, H. S.; MORAIS, M. R. A. Otimização da escolha dos pontos de medição usados na estimação de parâmetros de modelos de baterias de chumbo-Ácido. Simpósio Brasileiro de Automação Inteligente - SBAI, 2015.

LIAW, B. Y.; BETHUNE, K. P.; YANG, X. G. Advanced integrated battery testing and simulation. Journal of Power Sources, v. 110, n. 2, p. 330_340, 2002.

SHEPHERD, C. M. Theoretical design of primary and secundary cells - part 3 – battery discharge equation - technical report. Washington D.C., 1963.

TREMBLAY, O.; DESSAINT, L. A. Experimental validation of a battery dynamic model for ev applications. World Electric Vehicle Journal, 2009.

TREMBLAY, O.; DESSAINT, L.-A.; DEKKICHE, A.-I. A generic battery model for the dynamic simulation of hybrid electric vehicles. Vehicle Power and Propulsion Conference, 2007. VPPC 2007. IEEE, p. 284_289, 2007.

DURR, M.; CRUDEN, A.; GAIR, S.; MCDONALD, J. Dynamic model of a lead acid battery for use in a domestic fuel cell system. Journal of Power Sources, v. 161, n. 2, p. 1400_1411, 2006.

CERAOLO, M. New dynamical models of lead-acid batteries. IEEE Transactions on Power Systems, v. 15, n. 4, p. 1184_1190, 2000.

KAISER, R. Development of battery lifetime models for energy storage systems in renewable energy systems res. 2003.

JACKEY, R. A. A simple, e_ective lead-acid battery modeling process for electrical system component selection. 2007.

MITCHELL, M. An introduction to genetic algorithms. Cambridge, Massachusetts: MIT Press, 1998.

GOLDBERG, D. E. Genetic algorithm in search, optimization, and machine learning. EUA: Addison-Wesley, 1989.

DAVIS, L. D. Handbook of genetic algorithms. Michigan: Van Nostrand Reinhold, 1991.
Published
2019-04-22
How to Cite
FREITAS, David Ciarlini et al. Parameter estimation of a lead-acid battery model using genetic algorithm. Journal of Mechatronics Engineering, [S.l.], v. 2, n. 1, p. 2 - 7, apr. 2019. ISSN 2595-3230. Available at: <http://jme.ojs.galoa.net.br/index.php/jme/article/view/23>. Date accessed: 23 may 2019. doi: https://doi.org/10.21439/jme.v2i1.23.