The Use of a Statistical Filter and Metaheuristics to Model and Control The DC Motor of the Mobile Robot Used on NXP Cup


Over the past decades, Robotics is one of the research fields with more advances. From methodologies of low-level control, used on actuators, to high-level control, used with artificial intelligence approaches. One of the most interesting problem that a mobile robot faces is autonomous navigation. For the robot be able to navigate on the environment autonomously, it have to make use of sensory input from one or more sensors that are used to perceive the robot surroundings as well as sensors that measure internal states of the robot. One of the most used control theory methodology is the proportional-integrative-derivative (PID) controller, where its parameters are estimated through a variety of ways, from raw mathematical modeling to the application of hybrid approaches that uses both a mathematical model and metaheuristics such as genetic algorithms. This paper aims to estimate the parameters of the direct current motor through a Kalman filter and use those to estimate the PID parameters to control the DC motor by the usage of a genetic algorithm. Results shows that the derived PID controller is quite efficient on the control of the DC motor used, thus validating the methodology.


ALBRECHT, C.; KLÖCK, J.; MARTENS, O.; SCHUMACHER, W. Online Estimation and Correction of Systematic Encoder Line Errors. Machines, v. 5, n. 1, 2017.
AL-JARRAH, R.; AL-JARRAH, M.; ROTH, H. A Novel Edge Detection Algorithm for Mobile Robot Path Planning. Journal of Robotics, v. 2018, 2018.
AZMI, Z.; MAWENGKANG, H. Perceptron Genetic to Recognize Openning Strategy Ruy Lopez. 4th International Conference on Operational Research - InteriOR, 2018.
BORENSTEIN, J.; FENG, L. Measurement and Correction of Systematic Odometry Errors in Mobile Robots. IEEE Transactions on Robotics and Automation, v. 12, n. 6, p. 869-880, 1996.
CHOU, C.-Y.; JUANG, C.-F. Navigation of an Autonomous Wheeled Robot in Unknown Environments Based on Evolutionary Fuzzy Control. Inventions, v. 3, n. 1, 2018.
DAHALAN, A. A.; SAUDI, A.; SULAIMAN, J.; DIN, W. R. W. Numerical evaluation of mobile robot navigation in static indoor environment via EGAOR Iteration. Journal of Physics: Conference Series, v. 890, n. 1, 2017.
DANUSUYA, P.; BALAMURUGA, K.; MAHALAKSHMI, R. Parameter Identification in BLDC Motor using Optimization Technique. Journal of Applied Science and Engineering Methodologies, v. 3, n. 2. P. 465-470, 2017.
DOERR, A.; NGUYEN-TUONG, D.; MARCO, A.; SCHAAL, S.; TRIMPE, S. Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers. IEEE International Conference on Robotics and Automation, 2017.
DU, L.; LI, L.; XU, Y. A genetic antenna selection algorithm with heuristic beamforming for massive MIMO systems. 19th International Symposium on Wireless Personal Multimedia Communications - WPMC, 2016.
DURIEZ, C; COEVOET, E.; LARGILLIERE, F.; BIEZE, T. M.; ZHANG, Z.; SANZ-LOPEZ, M.; CARREZ, B.; MARCHAL, D.; GOURY, O.; DEQUIDT, J. Framework for online simulation of soft robots with optimization-based inverse model. IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots - SIMPAR, p. 111-118, 2016.
DWIVEDI, A. K.; BHATT, S. K.; GHOSH, S. Fractional order butterworth filter design using Artificial Bee colony algorithm. 7th International Symposium on Embedded Computing and System Design - ISED, 2017.
DZIUBEK, N.; WINNER, H.; BECKER, M.; LEINEN, S. Sensordatenfusion zur hochgenauen Ortung von Kraftfahrzeugen mit integrierter Genauigkeits- und Integritätsbewertung der Sensorsignale. Technische Universität Darmstadt, 2012.
ELSROGY, W. M.; FKIRIN, M. A.; HASSAN, M. A. M. Speed Control of DC Motor Using PID Controller Based on Artificial Intelligence Techniques. 1st IEEE International Conference on Control, Decision and Information Technologies - CoDIT, 2013.
GŁOWACZ, Z.; GŁOWACZ, W. Mathematical Model of DC Motor for Analysis of Commutation Processes. Electrical Power Quality and Utilisation, v. 3, n. 2, p. 65-68, 2017.
GOHARI, P. Lecture 6: Discrete Equivalents. Available on: "". Accessed on: 01 de jan. 2018.
GREENBERG, J. N.; TAN, X. Kalman Filtering-Aided Optical Localization of Mobile Robots: System Design and Experimental Validation. Dynamic Systems and Control Conference, 2017.
GRIGOROV, I. V.; ATANASOV, N. R. Application of recursive methods for parameter estimation in adaptive pole placement control of DC motor. 15th International Conference on Electrical Machines, Drives and Power Systems - ELMA, 2017.
GUO, P.; KIM, H.; VIRANI, N.; XU, J.; ZHU, M.; LIU, P. Exploiting Physical Dynamics to Detect Actuator and Sensor Attacks in Mobile Robots. Cryptography and Security, 2017.
HONG, T.-P.; PENG, Y.-C.; LIN, W.-Y.; WANG, S.-L. Migration Effect of Hierarchical Multi-Population Genetic Algorithm. 3rd IEEE International Conference on Cybernetics - CYBCONF, 2017.
KHAN, A. R.; MEHDI, H.; SALEEM, S. M. A.; RABBANI, M. J. A Comparison of Predictive Parameter Estimation using Kalman Filter and Analysis of Variance. International Journal of Advanced Computer Science and Applications – IJACSA, v. 8, n. 8, 2017.
LIANG, Y.; HONG, F.; LIN, Q.; BI, S.; FENG, L. Optimization of robot path planning parameters based on genetic algorithm. IEEE International Conference on Real-time Computing and Robotics - RCAR, 2017.
LIM, S. M.; SULTAN, A. B.; SULAIMAN, M. N.; MUSTAPHA, A.; LEONG, K. Y. Crossover and Mutation Operators of Genetic Algorithms. International Journal of Machine Learning and Computing, v. 7, n. 1, p. 9-12, 2017.
LIU, Z. Design and Simulation of a LQG Optimal Controller for a Mobile Cart. Department of Electrical & Computer Engineering, Temple University, 2008.
NAKATANI, S.; SANDS, T. Battle-damage Tolerant Automatic Controls. Electrical and Electronic Engineering, v. 8, n. 1, p. 10-23, 2018.
NXP. NXP Cup Overview. Available on: "". Accessed on: 01 de jan. 2018.
NXP. The NXP Cup Rules 2017-2018 EMEA Rules. Available on:"". Accessed on: 01 de jan. 2018.
ÖZASLAN, T.; LOIANNO, G.; KELLER, J.; TAYLOR, C. J.; KUMAR, V.; WOZENCRAFT, J. M.; HOOD, T. Autonomous Navigation and Mapping for Inspection of Penstocks and Tunnels with MAVs. IEEE Robotics and Automation Letters, v. 2, n. 3, 2017.
PARK, J. W.; NGUYEN, H. X.; TRAN, T. N.-C.; JEON, J. W. Improve efficiency multi-turn magnetic encoder that uses gear system. 17th International Conference on Control, Automation and Systems - ICCAS, 2017.
SANKARDOSS, V.; GEETHANJALI, P. Parameter estimation and speed control of a PMDC motor used in wheelchair. 1st International Conference on Power Engineering, Computing and Control (PECCON), 2017.
SANKARDOSS, V.; GEETHANJALI, P. PMDC Motor Parameter Estimation Using Bio-Inspired Optimization Algorithms. IEEE Access, v. 5, p. 11244-11254, 2017.
SHIH, C.-C.; LIN, L.C. Trajectory Planning and Tracking Control of a Differential-Drive Mobile Robot in a Picture Drawing Application. Robotics, v. 6, n. 17, 2017.
SUN, Q.; DIAO, M.; ZHANG, Y.; LI, Y. Cooperative Localization Algorithm for Multiple Mobile Robot System in Indoor Environment Based on Variance Component Estimation. Symetry, v. 9, n. 94, 2017.
TAKAHASHI, M. Self-repairing Adaptive PID Control for Plants with Sensor Failures. International Conference on Artificial Life and Robotics - ICAROB, 2018.
TOLEDO, J.; PIÑEIRO, J. D.; ARNAY, R.; ACOSTA, D.; ACOSTA, L. Improving Odometric Accuracy for an Autonomous Electric Cart. Sensors, v. 18, n. 1, 2018.
VOLKER, W. Maschinelles Sehen für mobile Roboter: Virtuell-aktive visuelle Odometrie. Automatisierungstechnik, v. 61, n. 4, 2013.
WANG, C.; LIU, X.; YANG, X.; HU, F.; JIAMG, A.; YANG, C. Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy. Applied Sciences, 2018.
WANG, J. Intelligent Control Model of PID Parameter Tuning Based on Criterion Function. Boletín Técnico, v. 55, n. 9, p. 262-269, 2017.
XING, H.; GUO, S.; SHI, L.; HE, Y.; SU, S.; CHEN, Z.; HOU, X. Hybrid Locomotion Evaluation for a Novel Amphibious Spherical Robot. Applied Sciences, v. 8, n. 156, 2018.
YANG, G. Game Theory-Inspired Evolutionary Algorithm for Global Optimization. Algorithms, v. 10, n. 4, 2017.
ZHANG, D.; WEI, B. On the Development of Learning Control for Robotic Manipulators. Robotics, v. 6, n. 23, 2017.
ZHANG, T.; TRAN, M.; HUANG, H. Design and Experimental Verification of Hip Exoskeleton With Balance Capacities for Walking Assistance. IEEE/ASME Transactions on Mechatronics, v. 23, n. 1, 2018.
How to Cite
MOREIRA, Artur Ferreira et al. The Use of a Statistical Filter and Metaheuristics to Model and Control The DC Motor of the Mobile Robot Used on NXP Cup. Journal of Mechatronics Engineering, [S.l.], v. 1, n. 1, p. 11 - 20, apr. 2018. ISSN 2595-3230. Available at: <>. Date accessed: 05 aug. 2020. doi: