Embedded Linux System for Digital Image Recognition using Internet of Things

Abstract

 The present paper describes the use of Digital Image Processing and Internet of Things for gestures recognition using depth sensors available on Kinect device. Using the open source libraries OpenCV and libfreenect, image data are translated and used for communicating Raspberry Pi embedded Linux system with PIC microcontroller board for peripheral devices controlling. A LED is triggered according to the hand gesture representing the corresponding number. Data are stored in a PHP Apache server running locally on Raspberry Pi. The proposed system can be used as a multifunctional tool in areas such as learning process, post-traumatic rehabilitation and visual and motor cognition time. Using image binarization and Naive-Bayes classifier, the achieved results show error lower than 5%.

References

AJAM, A.; AZIZ, A. A.; ASIRVADAM, V. S.; MUDA, A. S.; FAYE, I.; GARDEZI, S. J. S. A review on segmentation and modeling of cerebral vasculature for surgical planning. IEEE Access, v. 5, p. 15222–15240, 2017.

AN, Y.; SUN, S.; WANG, S. Naive bayes classifiers for music emotion classification based on lyrics. In:
2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). [S.l.: s.n.], 2017. p. 635–638.

ANDERSEN, M. P.; FIERRO, G.; CULLER, D. E. Enabling synergy in iot: Platform to service and beyond. p. 1–12, April 2016.

AYDIN, A. S.; DUBEY, A.; DOVRAT, D.; AHARONI, A.; SHILKROT, R. Cnn based yeast cell segmentation
in multi-modal fluorescent microscopy data. In: 2017 IEEE Conference on Computer Vision and Pattern
RecognitionWorkshops (CVPRW). [S.l.: s.n.], 2017. p. 753–759.

Embedded Linux System for Digital Image Recognition Using Internet of Things BAYES, T. An essay towards solving a problem in the doctrine of chances. In: Philosophical Transactions of the Royal Society of London. [S.l.: s.n.], 1763. p. 370–418.

BRADSKI, D. G. R.; KAEHLER, A. Learning Opencv, 1st Edition. First. [S.l.]: O’Reilly Media, Inc., 2008. ISBN 9780596516130.

CÂMARA, G.; SOUZA, R. C. M.; GARRIDO, U. M. F. J. Integrating remote sensing and GIS by object-oriented data modelling. [S.l.]: Computers & Graphics, Volume 20., 1996. 395–403 p.

CAMBRA, C.; SENDRA, S.; LLORET, J.; GARCIA, L. An iot service-oriented system for agriculture monitoring. In: 2017 IEEE International Conference on Communications (ICC). [S.l.: s.n.], 2017. p. 1–6.

CHEN, Y.-K.; CHIEN, S.-Y. Perpetual video camera for internet-of-things. In: 2012 Visual Communications and Image Processing. [S.l.: s.n.], 2012. p. 1–7.

CHEN, Y. P.; LIU, C. H.; CHOU, K. Y.; WANG, S. Y. Real-time and low-memory multi-face detection system design based on naive bayes classifier using fpga. In: 2016 International Automatic Control
Conference (CACS). [S.l.: s.n.], 2016. p. 7–12.

DESAI, P.; SHETH, A.; ANANTHARAM, P. Semantic gateway as a service architecture for iot interoperability. In: 2015 IEEE International Conference on Mobile Services. [S.l.: s.n.], 2015. p.
313–319. ISSN 2329-6429.

DEY, S.; ROY, A.; DAS, S. Home automation using internet of thing. In: 2016 IEEE 7th Annual
Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). [S.l.:
s.n.], 2016. p. 1–6.

DU, C.; GAO, S. Image segmentation-based multifocus image fusion through multi-scale convolutional
neural network. IEEE Access, v. 5, p. 15750–15761, 2017.

DU, H.; BURR, K. An algorithm for automatic flood histogram segmentation for a pet detector. In: 2012
IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). [S.l.: s.n.],
2012. p. 3488–3492. ISSN 1082-3654.

EL-LAITHY, R. A.; HUANG, J.; YEH, M. Study on the use of microsoft kinect for robotics applications.
In: Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium. [S.l.: s.n.],
2012. p. 1280–1288. ISSN 2153-358X.

FREIRE, D. S.; SILVA, M. J. R.; JUCÁ, S. C. S. Sistema embarcado linux para reconhecimento de
padrões da mão utilizando conceitos de pdi e iot. In: III Escola Regional de Informática do Piauí. [S.l.: s.n.], 2017. v. 1, p. 200–205.

GONZALEZ, R. C.; WOODS, R. C. Processamento Digital de Imagens. [S.l.]: Pearson, 2011. 569 p.

HARBOR, R. Harbor research’s infographic on the internet of things and smart services”, https://pt.slideshare.net/harborresearch/harborresearchs-infographic-on-the-internet-of-things-andsmart-
services. acessado em: 18 May 2016.".

HO, D. J.; FU, C.; SALAMA, P.; DUNN, K.W.; DELP, E. J. Nuclei segmentation of fluorescence microscopy
images using three dimensional convolutional neural networks. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). [S.l.: s.n.], 2017. p. 834–842.

IBM. A interoperabilidade da internet das coisas. https://www.ibm.com/developerworks/community/
blogs/tlcbr/entry/mp207?lang=en. acessado em: 12 de julho de 2017.". In: . [S.l.: s.n.], 2014.

JÉGOU, S.; DROZDZAL, M.; VAZQUEZ, D.; ROMERO, A.; BENGIO, Y. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). [S.l.: s.n.], 2017. p. 1175–1183.

JUCÁ, S.; CARVALHO, P.; BRITO, F. Sanusb: software educacional para o ensino da tecnologia
de microcontroladores. In: Ciências & Cognição (UFRJ). [S.l.: s.n.], 2009. v. 14, p. 134–144.

JUCÁ, S.; PEREIRA, R.; VASCONCELOS, M. Sanusbee: erramenta para gravação wireless de microcontroladores via bluetooth e zigbee. In: Connepi - Congresso Norte Nordeste de Pesquisa e Inovação, Palmas-TO. [S.l.: s.n.], 2012.

KODALI, R. K.; JAIN, V.; BOSE, S.; BOPPANA, L. Iot based smart security and home automation system.
In: 2016 International Conference on Computing, Communication and Automation (ICCCA). [S.l.:
s.n.], 2016. p. 1286–1289.

KODALI, R. K.; JAIN, V.; BOSE, S.; BOPPANA, L. Iot based smart security and home automation
system. In: 2016 International Conference on Computing, Communication and Automation
(ICCCA). [S.l.: s.n.], 2016. p. 1286–1289.

LAHIRI, A.; AYUSH, K.; BISWAS, P. K.; MITRA, P. Generative adversarial learning for reducing manual
annotation in semantic segmentation on large scale miscroscopy images: Automated vessel segmentation
in retinal fundus image as test case. In: 2017 IEEE Conference on Computer Vision and Pattern
RecognitionWorkshops (CVPRW). [S.l.: s.n.], 2017. p. 794–800.

LECUN, Y.; HUANG, F. J.; BOTTOU, L. Learning methods for generic object recognition with invariance
to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004. [S.l.: s.n.], 2004. v. 2, p. II–97–104 Vol.2. ISSN
1063-6919.

LEE, S.; TEWOLDE, G.; KWON, J. Design and implementation of vehicle tracking system using gps/gsm/gprs technology and smartphone application. In: 2014 IEEE World Forum on Internet of Things (WF-IoT). [S.l.: s.n.], 2014. p. 353–358.

LEIBE, B.; LEONARDIS, A.; SCHIELE, B. Combined object categorization and segmentation with
an implicit shape model. In: Toward Category-Level Object Recognition, Part 4. [S.l.: s.n.], 2006. p.
508–524.

MADDIKATLA, S. K.; JANDHYALA, S. An accurate all CMOS temperature sensor for IoT applications. In:
2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). [S.l.: s.n.], 2016. p. 349–354.

MARZOUKI, A.; DELIGNON, Y.; PIECZYNSKI, W. Adaptative segmentation of sar images. In: OCEANS
’94. ’Oceans Engineering for Today’s Technology and Tomorrow’s Preservation.’ Proceedings. [S.l.:
s.n.], 1994. v. 2, p. II/449–II/454 vol.2.

MIAN, A. S.; BENNAMOUN, M.; OWENS, R. Three-dimensional model-based object recognition and
segmentation in cluttered scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 28,
n. 10, p. 1584–1601, Oct 2006. ISSN 0162-8828.

NAND, G. K.; NOOPUR; NEOGI, N. Defect detection of steel surface using entropy segmentation. In: 2014
Annual IEEE India Conference (INDICON). [S.l.: s.n.], 2014. p. 1–6. ISSN 2325-940X.

NOSRATI, M. S.; ANDREWS, S.; HAMARNEH, G. Bounded labeling function for global segmentation of multi-part objects with geometric constraints. In: 2013 IEEE International Conference on Computer
Vision. [S.l.: s.n.], 2013. p. 2032–2039. ISSN 1550-5499.

OGUL, I. U.; OZCAN, C.; HAKDAGLı, O. Fast text classification with naive bayes method on apache spark. In: 2017 25th Signal Processing and Communications Applications Conference (SIU). [S.l.: s.n.], 2017. p. 1–4.

PARDESHI, V.; SAGAR, S.; MURMURWAR, S.; HAGE, P. Health monitoring systems using iot and raspberry pi x2014; a review. In: 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). [S.l.: s.n.], 2017. p. 134–137.

PEDRINI, H.; SCHWARTZ, W. R. Análise de Imagens Digitais: Princípios, Algoritmos e Aplicações. [S.l.]: Editora Thomson Learning, 2007. 528 p. ISBN 978-85-221-0595-3.

PEREIRA, C.; PINTO, A.; AGUIAR, A.; ROCHA, P.; SANTIAGO, F.; SOUSA, J. Iot interoperability for actuating applications through standardised m2m communications. In: 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). [S.l.: s.n.],
2016. p. 1–6.

PEREIRA, R.; JUCÁ, S. Sanusbot: Robô móvel educacional controlado por comando de voz via dispositivo android. In: Connepi - Congresso Norte Nordeste de Pesquisa e Inovação. [S.l.: s.n.], 2013.

PEREIRA, R. I. S.; JUCA, S. C. S.; CARVALHO, P. C. M. de. Online monitoring system for electrical microgeneration via embedded wifi modem. IEEE Latin America Transactions, v. 14, n. 7, p. 3124–3129, July 2016. ISSN 1548-0992.

PUTRANTO, E. B.; SITUMORANG, P. A.; GIRSANG, A. S. Face recognition using eigenface with naive bayes. In: 2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS). [S.l.: s.n.],
2016. p. 1–4.

QIANG, W.; ZHANG, Q.; MIAO, W.; LI, G.; WANG, H.; FENG, S. A power-constrained contrast enhancement algorithm for amoled display using histogram segmentation. In: 2013 IEEE 10th International Conference on ASIC. [S.l.: s.n.], 2013. p. 1–4. ISSN 2162-7541.

RAZZAK, M. I.; NAZ, S. Microscopic blood smear segmentation and classification using deep contour aware cnn and extreme machine learning. In: 2017 IEEE Conference on Computer Vision and Pattern
RecognitionWorkshops (CVPRW). [S.l.: s.n.], 2017.
p. 801–807.

ROUSSON, M.; DERICHE, R. A variational framework for active and adaptative segmentation of vector valued images. In: Workshop on Motion and Video Computing, 2002. Proceedings. [S.l.: s.n.], 2002. p. 56–61.

RUPANI, A.; WHIG, P.; SUJEDIYA, G.; VYAS, P. A robust technique for image processing based on interfacing of raspberry-pi and fpga using iot. In: 2017 International Conference on Computer,
Communications and Electronics (Comptelix). [S.l.: s.n.], 2017. p. 350–353.

SAARI, M.; BAHARUDIN, A. M. bin; HYRYNSALMI, S. Survey of prototyping solutions utilizing raspberry pi. In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). [S.l.: s.n.], 2017. p. 991–994.

SANUSB, G. Aplicações práticas de raspberry pi com microcontroladores pic. 1 ed, Ceará. In: . [S.l.: s.n.], 2006.

SANUSB, G. Aplicações práticas de eletrônica e microcontroladores em sistemas computacionais. 1 ed,
Ceará. In: . [S.l.: s.n.], 2009.

SHOTTON, J.; WINN, J.; ROTHER, C.; CRIMINISI, A. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: . Computer Vision – ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 1–15. ISBN 978-3-540-33833-8. Disponível em: .

SIMHA, S. N.; KUMAR, M. M.; NAGARAJA, V.; PRABHAKAR, T. V.; JAMADAGNI, H. S. Infinite coffee cup. In: 2013 Texas Instruments India Educators’ Conference. [S.l.: s.n.], 2013. p. 84–90.

TAN, C. W.; KUMAR, A. Efficient iris segmentation using grow-cut algorithm for remotely acquired iris images. In: 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS). [S.l.: s.n.], 2012. p. 99–104.

VIDHYA, A. 6 easy steps to learn naive bayes algorithm, https://www.analyticsvidhya.com/blog/2015/09/naivebayes-explained/. acessado em: 22 de maio de 2017.".
In: . [S.l.: s.n.], 2015.

XIE, Q. J.; JIN, W. B.; MA, L.; HOU, D. B. Fast global segmentation based on the dual formulation of
tv-norm. In: 2010 3rd International Congress on Image and Signal Processing. [S.l.: s.n.], 2010. v. 3,
p. 1382–1385.

YI, Y.; GUANG, Y.; HAO, Z.; MENG-YIN, F.; MEI-LING, W. Object segmentation and recognition in 3d point cloud with language model. In: 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI). [S.l.: s.n.], 2014. p. 1–6.

ZHANG, Y.; LIANG, J. A vision based method for object recognition. In: 2016 3rd International Conference on Information Science and Control Engineering (ICISCE). [S.l.: s.n.], 2016. p. 139–142..
Published
2018-10-07
How to Cite
FREIRE, Davi Soares et al. Embedded Linux System for Digital Image Recognition using Internet of Things. Journal of Mechatronics Engineering, [S.l.], v. 1, n. 2, p. 2 - 11, oct. 2018. ISSN 2595-3230. Available at: <http://jme.ojs.galoa.net.br/index.php/jme/article/view/14>. Date accessed: 13 dec. 2018. doi: https://doi.org/10.21439/jme.v1i2.14.